Customization: | Available |
---|---|
Temperature: | Ordinary Temperature |
Certification: | GS, CE, ISO9001 |
Still deciding? Get samples of US$ 300/Piece
Request Sample
|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
1. The pressure adjustment is intuitively managed on the pilot, offering unmatched convenience and efficiency. It facilitates seamless, labor-saving, and continuous adjustments during operational activity, enhancing its suitability for high precision control applications requiring superior accuracy.
2. Compared to a conventional self-operated valve, this design offers a significantly wider adjustment range, enabling versatility in its application.
3. This device is extraordinarily sensitive, adept at detecting minute pressures as slight as 50 mm H2O or recognizing minimal pressure fluctuations with remarkable precision.
4. Boasting an exceptional pressure reduction ratio, this regulator excels, achieving a remarkable pressure differential ratio of 1600 in scenarios with an upstream pressure of 0.8 MPa and a downstream pressure of 50 mm H2O.
For inquiries regarding other state-of-the-art solutions, such as the self-operated micro-pressure regulator valve, differential pressure regulator valve, temperature regulator valve, flow regulator valve, or liquid level regulator valve, we invite you to connect with the expert team at SNT Technical Department.
Nominal diameter(DN) | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | 250 | 300 | |||||||
Length of the receiver tube (B) | 383 | 512 | 603 | 862 | 1023 | 1380 | 1800 | 2000 | 2200 | |||||||||||
Flange face distance L(PN16,25,40) | 150 | 160 | 180 | 200 | 230 | 290 | 310 | 350 | 400 | 480 | 600 | 730 | 850 | |||||||
Flange face distance L(PN64) | 230 | 260 | 300 | 340 | 380 | 430 | 500 | 550 | 650 | 775 | 900 | |||||||||
Pressure adjustment range KPa |
15~140 | H | 475 | 520 | 540 | 710 | 780 | 840 | 880 | 940 | 950 | |||||||||
A | 280 | 308 | ||||||||||||||||||
120~300 | H | 455 | 500 | 520 | 690 | 760 | 800 | 870 | 900 | 950 | ||||||||||
A | 230 | |||||||||||||||||||
280~500 | H | 450 | 490 | 510 | 680 | 750 | 790 | 860 | 890 | 940 | ||||||||||
A | 176 | 194 | 280 | |||||||||||||||||
480~1000 | H | 445 | 480 | 670 | 740 | 780 | 780 | 850 | 880 | 930 | ||||||||||
A | 176 | 194 | 280 | |||||||||||||||||
PN16 Weight (Kg) PN16 as an example |
26 | 37 | 42 | 72 | 90 | 112 | 130 | 169 | 285 | 495 | 675 |
Part name | Materials |
Valve body |
A216 WCB,A351 CF8/CF3/CF8M/CF3M,ZG230-450,ZG0Cr18Ni9Ti,ZG0Cr18Ni12Mo2Ti |
Spool |
304SS,316SS,304LSS,316LSS,1Cr18Ni9, 0Cr18Ni12Mo2Ti (Stellite Clad welding Stellite) PTFE |
Valve seat |
304SS,316SS,304LSS,316LSS,1Cr18Ni9,0Cr18Ni12Mo2Ti (Stellite Clad welding Stellite) |
Stem | 304SS,316SS,304LSS,316LSS,1Cr18Ni9,1Cr18Ni9,0Cr18Ni12Mo2Ti |
Rubber diaphragm | Nitrile,ethylene,fluoro,oil resistant rubber ,0Cr18Ni9Ti |
Membrane cover | Q235,Q235 Painting PTFE |
Packing |
Polytetrafluoroethylene,flexible graphite |
Trouble shooting | Causes of production | Exclusion methods |
Unstable post-valve pressure with | 1,Spool stuck by foreign objects 2,Valve stem, push rod jammed 3,Fluid inlet pipe blocked |
1,Reinstallation to exclude foreign objects 2,Re-adjustment 3,unclogging |
,pressure changes in front of the valve | 1,Set spring stiffness is too large 2,The valve bore is too large 3,The pressure before the valve is too high, the pressure reduction ratio is too large |
1,Replacement of springs 2,Replace the smaller diameter 3,The pressure before the valve and the pressure after the valve exceed 20, should be 2 levels of pressure reduction |
Pressure behind the valve does not drop, always above the demand value | 1,Set spring stiffness is too small 2,The valve bore is too small 3,The pressure reduction ratio is too small |
1,Replacement of springs 2,Replace the larger diameter 3,Pressure before the valve: the pressure after the valve is lower than 1.25, the pressure before the valve should be increased |
Pressure behind the valve does not rise, always below the demand value | 1. Set spring stiffness is too small 2,The spool is stuck by a foreign object 3,Valve stem, push rod jammed 4,The spool and seat are damaged, the leakage is too large 5,The valve bore is too large |
1,Replacement of springs 2,Reinstallation 3,Re-adjustment 4,Re-grind, or replace 5,Replace smaller diameter |
Pressure behind the valve does not rise and always moves below the demand value | 1 Set spring stiffness is too large 2,The valve bore is too small 3,The spool, stem, push rod, etc. are stuck |
1,Replacement of springs 2,Replace larger diameter 3,Exclude the cause of jamming and readjust |
Pre-valve pressure does not drop, always moves above the demand value | 1,The valve bore is too large 2,Actuator membrane chamber capacity is too small |
1 Select the proper valve diameter 2,Add a damper in the inlet pipeline |
Instructions for Ordering
Valve type | Valve name | ||
Nominal diameter (mm) | √ | Nominal pressure (Mpa) | √ |
Pressure adjustment range (Mpa) | Control valve before or after | √ | |
Pressure setting value (Mpa) | √ | Name of medium | √ |
Actuator type | Medium working temperature | √ | |
Rated flow coefficient | Medium state | √ | |
Max. pressure before valve Minimum pressure before valve Normal pressure before the valve(Mpa) |
√ | Max. pressure after valve Min. pressure after valve Normal pressure after valve (Mpa) |
√ |
Maximum flow rate Minimum flow rate Normal flow rate |
Viscosity of liquids Liquid density Gas density |
||
Material:Valve body Valve internals |
Leakage level requirements (GB/T4213-92) |
||
Process piping dimensions | √ | Corrosion resistance requirements | |
Flange face distance (mm) L | Flange execution standards | ||
Supplied with accessories | Condenser, receiver, mating flange, fasteners, regulator bar, pressure take-off tube, pressure take-off fitting |